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Abstract
With the help of strong-coupling theory, we calculate the critical exponents
of O(N)-symmetric φ4-theories in 4 − ε dimensions up to five loops with an
accuracy comparable to that achieved by Borel-type resummation methods.

PACS number: 1110

1. Introduction

Recently, one of us [1, 2] has developed a new approach to critical exponents of field theories
based on the strong-coupling limit of variational perturbation expansions [3] and [4]3. This
limit is relevant for critical phenomena if the renormalization constants are expressed in terms
of the unrenormalized coupling constant. The theory was first applied successfully to O(N)-
symmetric φ4-theories in three dimensions yielding the three fundamental critical exponents
ν, η, ω with high accuracy.

The method has also been shown to work for perturbation expansions of these theories
in 4 − ε dimensions [5], but here only two-loop [5, 6] and three-loop [7] expansions were
treated, where all results can be written down explicitly. In this paper we want to extend these
calculations to the five-loop levels using the expansions given in [8, 9].

2. Resume of strong-coupling theory

From model studies of perturbation expansions of the anharmonic oscillator we have learned
that variational perturbation expansions possess good strong-coupling limits [10] and [11]4,
with a speed of convergence governed by the convergence radius of the strong-coupling
expansion [12]. This has enabled us to set up a simple algorithm [4] for deriving uniformly
convergent approximations to functions of which one knows a few initial Taylor coefficients

3 Details of strong-coupling theory are found in chapter 5 of the textbook.
4 This paper contains references to earlier, less powerful calculations of strong-coupling expansion coefficients from
weak-coupling perturbation theory.
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and an important scaling property: the functions approach a constant value with a given inverse
power of the variable. The renormalized coupling constant g and the critical exponents of a
φ4-theory have precisely this property as a function of the bare coupling constant gB. In
D = 4 − ε dimensions the approach is parametrized as follows [1]:

g(gB) = g∗ − const

g
ω/ε

B

+ · · · (2.1)

where g∗ is the infrared-stable fixed point, and ω is called the critical exponent of the approach
to scaling. This exponent is universal, governing the approach to scaling of every function of
F(g),

f (gB) = F(g(gB)) = F(g∗) + F ′(g∗)× const

gB
≡ f ∗ +

const′

g
ω/ε

B

. (2.2)

This type of scaling behaviour is observed experimentally in systems described by φ4-theories,
and strong-coupling theory is designed to calculate f (g∗) and ω.

The difference between the expansions of field theory and of the harmonic operator lies
mainly in the power sequence of the nonleading correction terms to (2.1). Whereas the
harmonic oscillator has only corrections of the form 1/gnωB , n = 2, 3, 4, . . . , the field theory has
also daughter corrections 1/gnω

′
B with ω′ �= ω. These will be neglected, this being equivalent

to neglecting of confluent singularities at the infrared-stable fixed point in the renormalization
group approach discussed by Nickel [13] and in [14].

Let f (gB) be a function with these properties, and suppose that we know its first L + 1
expansion terms,

fL(gB) =
L∑
l=0

alg
l
B. (2.3)

More specifically than in equation (2.1), we assume that f (gB) approaches its constant strong-
coupling limit f ∗ in the form of an inverse power series

fM(gB) =
M∑
m=0

bm(g
−2/q
B )m (2.4)

with a finite convergence radius [15]. Then the Lth approximation to the value f ∗ is obtained
from the strong-coupling formula [1, 2, 5]

f ∗
L = opt

ĝB

[ L∑
l=0

alvl ĝ
l
B

]
vl ≡

L−l∑
k=0

( −ql/2
k

)
(−1)k. (2.5)

The quantities vl are simply binomial expansions of (1 − 1)−ql/2 up to the order L − l. The
expression in brackets has to be optimized in the variational parameter ĝB. The optimum is
the smoothest among all real extrema. If there are no real extrema, the turning points serve
the same purpose.

The derivation of this rule is simple: we replace gB in (2.3) trivially by ḡB ≡ gB/κ
q with

κ = 1. Then we rewrite, again trivially, κ−q as (K2 +κ2 −K2)−q/2 with an arbitrary parameter
K . Each term is now expanded in powers of r = (κ2 −K2)/K2 assuming r to be of the order
gB. Then we take the limit gB → ∞ at a fixed ratio ĝB ≡ gB/K

q , so that K → ∞ like g1/q
B

and r → −1, yielding (2.5). Since the final result to all orders cannot depend on the arbitrary
parameter K , we expect the best result to any finite order to be optimal at an extremal value
of K , i.e. of ĝB.

The approach to the strong-coupling limit of r is r = −1 + κ2/K2 = −1 + O(g−2/q
B ).

This implies the leading correction to f ∗
L to be of the order of g−2/q

B . Application of the
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theory to a function with the strong-coupling behaviour (2.1) requires therefore a parameter
q = 2ε/ω in formula (2.5). A systematic expansion in powers of K2 leads to the strong-
coupling expansion (2.4).

3. Renormalization constants and critical exponents

Let us briefly recall the definitions of the φ4-theory inD = 4 − ε dimensions whose five-loop
expansions we want to evaluate. The bare Euclidean action is

A =
∫

dDx

{
1

2
[∂φB(x)]

2 +
1

2
m2

Bφ
2
B(x) + (4π)2

gB

4!
[φ2

B(x)]
2

}
(3.1)

where the field φB(x) is an N -dimensional vector, the action being O(N)-symmetric. The
Ising model corresponds to N = 1, the superfluid phase transition to N = 2, the classical
Heisenberg magnet to N = 3. The critical behaviour of dilute polymer solutions is described
by N = 0.

By calculating the Feynman integrals, regularized via an expansion in ε = 4 − D and
arbitrary mass scale µ, one obtains renormalized values of mass, coupling constant and field
related to the bare quantities by renormalization constants Zφ,Zm,Zg:

m2
B = m2 ZmZ

−1
φ gB = g ZgZ

−2
φ φB = φ Z

1/2
φ . (3.2)

Up to two loops, perturbation theory yields the following expansions in powers of the
dimensionless reduced coupling constant gB ≡ λB/µ

ε:

g = gB − N + 8

3ε
g2

B +

[
(N + 8)2

9ε2
+

3N + 14

6ε

]
g3

B + · · · (3.3)

m2

m2
B

= 1 − N + 2

3

gB

ε
+
N + 2

9

[
N + 5

ε2
+

5

4ε

]
g2

B + · · · (3.4)

φ2

φ2
B

= 1 +
N + 2

36

g2
B

ε
+ · · · . (3.5)

We refrain from writing down the lengthy five-loop expressions calculated in [8], since they can
be downloaded from the internet [9]. We now set the scale parameter µ equal to the physical
mass m and consider all quantities as functions of gB = λB/m

ε. In order to describe second-
order phase transitions, we let m2

B go to zero like τ = const × (T − Tc) as the temperature
T approaches the critical temperature Tc, and assume that also m2 goes to zero, and thus gB

to infinity. The latter assumption will be seen to be self-consistent at the end. Assuming the
theory to scale as suggested by experiments, we now determine the value of the renormalized
coupling constant g and of the exponent ω of approach in the strong-coupling limit gB → ∞,
assuming the behaviour (2.1). First we apply formula (2.5) to the logarithmic derivative (3.6)
of the function g(gB):

s(gB) ≡ gBg
′(gB)/g(gB). (3.6)

Setting s∗L = 0 determines the approximation ωL to ω.
The other critical exponents are found as follows. From the experimental behaviour of

systems described by φ4-theories, we know that the ratios m2/m2
B and φ2/φ2

B have a limiting
power behaviour for small m:

m2

m2
B

∝ g
−ηm/ε
B ∝ mηm

φ2

φ2
B

∝ g
η/ε

B ∝ m−η. (3.7)
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The powers ηm and η can then be calculated from the strong-coupling limits of the logarithmic
derivatives

ηm(gB) = −ε d

d log gB
log

m2

m2
B

η(gB) = ε
d

d log gB
log

φ2

φ2
B

. (3.8)

Inserting (3.4) and (3.5) on the right-hand sides yields the expansions

ηm(gB) = N + 2

3
gB − N + 2

18

(
5 + 2

N + 8

ε

)
g2

B + · · · (3.9)

η(gB) = N + 2

18
g2

B + · · · . (3.10)

When approaching the second-order phase transitions where the bare mass m2
B vanishes

like τ , the physical massm2 vanishes with a different power of τ . This power is obtained from
the first equation in (3.7), which shows that m ∝ τ 1/(2−ηm). In experiments one observes that
the coherence length of fluctuations ξ = 1/m increases near Tc like τ−ν . Comparison with
the previous equation shows that the critical exponent ν is equal to 1/(2 − ηm). Similarly we
see from the second equation in (3.7) that the scaling dimension D/2 − 1 of the free field φB

for T → Tc is changed in the strong-coupling limit to D/2 − 1 + η/2, the number η being
the so-called anomalous dimension of the field. This implies a change in the large-distance
behaviour of the correlation functions 〈φ(x)φ(0)〉 at Tc from the free-field behaviour r−D+2 to
r−D+2−η.

The magnetic susceptibility is determined by the integrated correlation function
〈φB(x)φB(0)〉. At zero coupling constant gB, this is proportional to 1/m2

B ∝ τ−1. The
interaction changes this to m−2φ2

B/φ
2. This quantity has a temperature behaviour m−(2−η) ∝

τ−ν(2−η) ≡ τ−γ , which defines the critical exponent γ = ν(2 − η) governing the divergence
of the susceptibility line. Using ν = 1/(2 − ηm) and the expansions (3.9), (3.10), we obtain
for γ (gB) the perturbation expansion up to second order in gB:

γ (gB) = 1 +
N + 2

6
gB +

N + 2

36

(
N − 4 − 2

N + 8

ε

)
g2

B + · · · . (3.11)

Explicit two-loop results were given in [5] and [6] and will not be repeated here. We
only mention that they lead to resummed expressions for the same ε-expansions as found by
renormalization group techniques.

4. Five-loop results

We now extend the two-loop results of [5,6] to five loops using the power series for the critical
exponents of [8, 9]. In a first step, we determine the parameter ω for which the logarithmic
derivative of g(gB) approaches zero for gB → ∞. We therefore insert the coefficients of the
power series of the logarithmic derivative of s(gB) from equation (3.6) into (2.5) and determine
q = 2/ω for L = 2, 3, 4, 5, to make s∗L = 0. The resulting ε-expansions for the approach-
to-scaling parameter ω reproduce the well known ε-expansions in [8] up to the corresponding
order. In figure 1, the approximations ωL are plotted against the number of loops L for ε = 1.

Apparently, the five-loop results are still some distance away from a constant (L → ∞)-
limit. The slow approach to the limit calls for a suitable extrapolation method. The general
convergence behaviour in the limit L → ∞ was determined in [1] to be of the general form

f ∗(L) ≈ f ∗ + const × e−c L1−ω
. (4.1)

We therefore plot the approximations sL for a given ω near the expected critical exponent
against L. To exploit the knowledge of the behaviour (4.1) we fit the points by the theoretical
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Figure 1. Critical exponent of approach to scaling ω calculated from s∗L = 0, plotted against the
order of approximation L.

curve (4.1) to determine the limit s∗. Then ω is varied, and the plots are repeated until s∗ is
zero. The resulting value for ω gives the desired critical exponent, and the associated plots are
shown in figure 2. Since the optimal variational parameter ĝB is determined from minima and
turning points for even and odd approximants in alternate order, the points are best fitted by
two different curves.

In order to determine the common constant c one plots even and odd approximations sL
directly against the variable xL = e−cL1−ω

. The constant c is then used to fit straight lines
through even and odd approximations which cross at zero xL. This procedure is shown in
figure 2, and yields the curve shown in figure 3. The resulting ω-values are listed in table 1.
They will now be used to derive the strong-coupling limits for the exponents ν, γ and η.

4.1. Exponents ν

For the calculation of the critical exponent ν, we proceed in two different ways. This will
give us an idea of the systematic error of the method. First we find the five-loop expansions
for ν(gB) using the relation ν(gB) = 1/[2 − ηm(gB)]. From this we calculate their strong-
coupling approximation νL forL = 2, 3, 4, 5. After extrapolating these to infiniteL, we obtain
the numbers listed for different universality classes O(N) in table 1 under the heading (I). The
corresponding extrapolation fits are plotted in figures 4 and 5. The resulting values for the
critical exponent ν(∞) are indicated by horizontal lines in figure 5.

The second method proceeds by calculating the strong-coupling values of ηm(gB) for
L = 2, 3, 4, 5. After extrapolating these to infinite L, the critical exponent ν is found from
ν = 1/(2 − η∗

m). The results are listed in table 1 under the heading (II). The table shows in
parentheses the L = 5-approximation for each quantity, from which we see how far away the
extrapolated result is from the highest approximation.

By repeating all calculations for a slightly different ω-value, we deduce the dependence
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N = 0 N = 1

N = 2 N = 3

sL= − 3.5 10 − 7 + 68.1869e− 4.93 L0.19655
sL= − 7.2 10 − 7 + 83.7387e− 5.16 L0.2002

sL= − 5.0 10 − 7 +109.764e− 5.46 L0.2052
sL= − 6.8 10 − 7 +156.916e− 5.84 L0.2092

Figure 2. Extrapolation of the solutions of the equation s∗L = 0 to L → ∞ with the help of the
theoretically expected large-L behaviour (4.1). The value of ω where s∗L goes to zero for L → ∞
determines the critical exponent ω = 2/q. The best extrapolating function is written at the top of
the figure.

of our results on the critical exponent ω used in the resummation process:

)ν =




−0.0900 × (ω − 0.8035)
−0.1375 × (ω − 0.7998)
−0.1853 × (ω − 0.7948)
−0.2271 × (ω − 0.7908)


 for



N = 0
N = 1
N = 2
N = 3


 . (4.2)

4.2. Exponents η and γ

The calculation of the critical exponent η is difficult in all resummation schemes since the
power series of η(gB) starts out with g2

B, so there is one approximation less than for ν. The
three approximations η3, η4, η5 obtained from the five-loop expansions are not sufficient to
carry out the above extrapolation procedure. The exponent is therefore calculated from the
strong-coupling limit of the power series for η̄(gB) ≡ ηm(gB) + η(gB), which supplies us with
the combination of critical exponents 2−1/ν+η. After finding η̄∗ we subtract from this 2−1/ν
and obtain the desired η. If we use ν (I) of table 1 in this subtraction, we obtain η-values listed
as η (I) in table 1. From ν (II) we obtain η (II). The fits leading to the strong-coupling limits
of η̄(gB) are shown in figures 6 and 7. As before, the limiting values for L → ∞ are indicated
by horizontal lines. The fitted extrapolation function is displayed at the top of each figure.

An independent strong-coupling calculation for the critical exponent η may be obtained
by resumming the series expansion for the critical exponent of the susceptibility γ = ν(2−η).
The extrapolation plots for this exponent are shown in figures 8 and 9. The resulting value for
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Figure 3. The same plot as in figure 2, but against the variable xL = e−cL1−ω
. The parameter c

is fixed by requiring the straight lines to cross on the vertical axis. When this intercept lies at the
origin, we have found the critical exponent ω, written at the top of each plot. For comparison, we
also show a direct plot against L in figure 2.

γ is also contained in table 1. As in all entries, we have listed the fifth-order approximations
in parentheses to illustrate the extrapolation distance to infinite order L.

The dependence on the value of ω is of the same order of magnitude as for ν:

)γ =




−0.1500 × (ω − 0.8035)
−0.2237 × (ω − 0.7998)
−0.3147 × (ω − 0.7948)
−0.4014 × (ω − 0.7908)


 for



N = 0
N = 1
N = 2
N = 3


 . (4.3)

4.3. Comparison with previous results and experiments

In table 1 we have added to our results also those obtained by other methods. Since an
extensive table has been published before (table 4 in [2]), we confine ourselves here to results
of the resummation of the ε-expansion by Guida and Zinn-Justin in [18], and those from three-
dimensional variational perturbation theory to sixth order for ω and to order seven for ν and
η in [2]. The difference between ν (I) and ν (II), and η (I) and η (II) is considerably smaller
than the typical errors in the other references.

The results of our strong-coupling theory agree very well with those obtained from Borel-
type resummation although we do not make use of the known large-order behaviour. For a good
test of the reliability of our results we compare our results with experiments. The most precise
experimental values are available from specific heat measurements performed on superfluid
helium near the λ-point at zero gravity in the space shuttle in 1992, which are reported in [16]5.

5 The initially published fit to the data in the first paper of [16] was erroneous and corrected in the second paper
of [16].
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Table 1. Extrapolated exponents of five-loop strong-coupling theory and comparison with the
results from Borel-type resummation of [18] (GZ) and [22] (MN), and from variational perturbation
theory in D = 3 dimensions (VPT, D = 3) of [2]. The parentheses behind each number show the
five-loop approximation to see the extrapolation distance. The two values for ν come one from a
resummation of the series for ν itself (I) and the other from the series for ν−1 (II). The two values
for η come from subtracting for one the value ν (I) and for the other the value ν (II).

VPT, D = 4 − ε Borel res. (GZ) VPT, D = 3 MN, D = 3

ω(ω5)

N = 0 0.803 5(0.7448) 0.828 ± 0.023 0.810
N = 1 0.799 8(0.7485) 0.814 ± 0.018 0.805
N = 2 0.794 8(0.7530) 0.802 ± 0.018 0.800
N = 3 0.790 8(0.7580) 0.794 ± 0.018 0.797

ν(ν5) (I) ν(ν5) (II)

N = 0 0.5874(0.5809) 0.5878(0.5832) 0.5875 ± 0.0018 0.588 3 0.5872 ± 0.0004
N = 1 0.6292(0.6171) 0.6294(0.6222) 0.6293 ± 0.0026 0.630 5 0.6301 ± 0.0005
N = 2 0.6697(0.6509) 0.6692(0.6597) 0.6685 ± 0.0040 0.671 0 0.6715 ± 0.0007
N = 3 0.7081(0.6821) 0.7063(0.6951) 0.7050 ± 0.0055 0.707 5 0.7096 ± 0.0008

η(η5) (I) η(η5) (II)

N = 0 0.0316(0.0234) 0.0305(0.0234) 0.0300 ± 0.0060 0.032 15 0.0297 ± 0.0009
N = 1 0.0373(0.0308) 0.0367(0.0308) 0.0360 ± 0.0060 0.033 70 0.0355 ± 0.0009
N = 2 0.0396(0.0365) 0.0396(0.0365) 0.0385 ± 0.0065 0.034 80 0.0377 ± 0.0006
N = 3 0.0367(0.0409) 0.0402(0.0409) 0.0380 ± 0.0060 0.034 47 0.0374 ± 0.0004

γ (γ5)

N = 0 1.157 6(1.1503) 1.1575 ± 0.0050 1.616 1.1569 ± 0.0004
N = 1 1.234 9(1.2194) 1.2360 ± 0.0040 1.241 1.2378 ± 0.0006
N = 2 1.310 45(1.2846) 1.3120 ± 0.0085 1.318 1.3178 ± 0.0010
N = 3 1.383 0(1.3452) 1.3830 ± 0.0135 1.390 1.3926 ± 0.0010

A best fit through the data points yields for the essential exponent α = 2 − 3ν the value

α = −0.010 56 ± 0.000 38 (4.4)

corresponding to

ν = 0.670 95 ± 0.000 13. (4.5)

Our resummation results in table 1 imply a value

νours = 0.6697 ± 0.0013 (4.6)

corresponding to

αours = −0.0091 ± 0.0039. (4.7)

This agrees satisfactorily with the experimental result. In figure 10 we have compared our
result with other experiments and various theoretical determinations.

Some remarks are necessary on the error estimates of our result. They are purely based
on an inspection of the way the extrapolation curves to infinite order in figures 1, 2 converge
against their limits. No systematic errors have been taken into account. These arise principally
from the fact that if one works with different functions of the critical exponents rather than
the exponents themselves, the associated series could give quite different results. In fact,
it is possible to set up some peculiar function of any of the exponents, whose power series
expansion has coefficients which do not render any strong-coupling limit. This freedom is
ignored, and it is so in all previous resummation procedures for critical exponents.
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Figure 5. The same plot as in figure 4, but against L. The fit function is written at the top of the
figure.
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Figure 6. Determination of the critical exponent η from the strong-coupling limit of ηm +η plotted
as a function of xL. Requiring the lines to cross at xL = 0 determines the parameter c in xL. See
the text.
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Figure 7. The same as above, plotted against the order of approximation L and the fit function
written at the top of the figure.
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Figure 8. Critical exponent γ obtained from variational perturbation theory plotted as a function
of xL. Requiring the lines to cross at xL = 0 determines the parameter c in xL. See the text.
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Figure 9. The same plot as in figure 8, but against L. The fit function is written at the top of the
figure.
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Figure 10. Critical exponent ν in comparison with experimental data and results from other
resummation schemes.

4.4. Conclusion

Application of strong-coupling theory to five-loop perturbation expansions of O(N)-symmetric
φ4-theories in 4 − ε dimensions yields satisfactory values for all critical exponents, and a very
good agreement of the exponent α with the experimental space shuttle data as a test of the
reliability of our calculation method. More details can be found in a forthcoming book on this
subject [28].
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